A Application of Usability Techniques in Medical Devices in Health Technology Management: A Rapid Review
Main Article Content
Keywords
Clinical engineering, Human factors engineering, Usability techniques, Health technology management, Health technology assessment
Abstract
The role of clinical engineering in health technology management (HTM), incorporating human factors engineering tools, such as usability techniques, allow for improvements in the development of safer, more effective, and quality use of technological solutions. This work resulted in a rapid review of the application of usability techniques to contribute to the development and use of technological solutions for health, so that the occurrence of adverse events can be mitigated. As a consequence, information can be provided for improvements in health technology processes, in order to stimulate and highlight the importance of human factors in health. In order to understand the application of usability techniques in clinical engineering throughout the life cycle of HTM, an exploratory study was done on the literature involving medical devices. This work reinforces the importance of applying techniques to identify the problems faced in the use of technologies and thereby contribute to the activities of clinical engineering so as to reduce errors and failures. The integration and consideration of human factors in the life cycle of HTM is essential for the further advancement of clinical engineering in technology management throughout the healthcare ecosystem, and also in the discussion, construction, and validation of strategies that will help in preventing adverse events.
Downloads
Abstract 74 | PDF Downloads 19
References
Signori, M.R. and Garcia, R. Clinical engineering incorporating human factors engineering into risk management. In Proceedings of World Congress on Medical Physics and Biomedical Engineering, Munich, Germany. September 7–12, 2009:449–452. http://doi.org/10.1007/978-3-642-03885-3_125.
Flewwelling, C.J., Easty, A.C.,Vincente, K.J., et al. The use of fault reporting of medical equipment to identify latent design flaws. J Biomed Inform. 2014;51:80–85. http://doi.org/10.1016/j.jbi.2014.04.009.
Rodziewicz, T.L., Houseman, B., Vaqar, S. et al. Medical Error Reduction and Prevention. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499956/.
MHRA. Guidance on applying human factors and usability engineering to medical devices including drug-device combination products in Great Britain. 2nd ed. Medicines And Healthcare Products Regulatory Agency, 2021. Available online: https://assets.publishing.service.gov.uk/media/60521d98d3bf7f0455a6e61d/Human-Factors_Medical-Devices_v2.0.pdf.
MHRA. Patient safety alert: improving medical device incident reporting and learning. Mar. 2014. NHS England. Available online: https://www.england.nhs.uk/publication/patient-safety-alerts-improving-medical-device-incident-reporting-and-learning/.
Cassano-Piché, A. Trbovich, P., Griffin, M., et al. Fatores Humanos para a Segurança da Tecnologia da Saúde: avaliando e melhorando o uso da tecnologia da saúde da saúde no mundo real. IFMBE:Canadá; 2015. Versão portuguesa do Livro “Human Factors For Health Technology Safety: Evaluating and Improving the Use of Health Technology In The Real World.”
Bitkina, O.V., Kim, H.K., Park, J. Usability and user experience of medical devices: an overview of the current state, analysis methodologies, and future challenges. Int J Ind Ergon. 2020;76:10293. http://doi.org/10.1016/j.ergon.2020.102932.
Food & Drug Administration. FDA. Applying human factors and usability engineering to medical devices: guidance for industry and food and drug administration staff. EUA. 2016. Available online: https://www.fda.gov/media/80481/download.
Brandão, M.R. and Garcia, R. Descriptive analysis of user-centered usability techniques to health technology management. In Proceedings of 2020 Congreso Nacional de Ingeniería Biomédica, virtual, October 15–17, 2020: 335–342. https://memoriascnib.mx/index.php/memorias/article/view/781.
Associação Brasileira De Normas Técnicas. ABNT NBR IEC 62366:2016 Produtos para a saúde—Aplicação da engenharia de usabilidade a produtos para a saúde. Brasil, 2016.
Associação Brasileira De Normas Técnicas. ABNT NBR ISO 9241-210:2011: Ergonomia da interação humano-sistema Parte 210: Projeto centrado no ser humano para sistemas interativos. Brasil, 2011.
Hyman, W.A. and Wangler, V. Human factors: environment. In Clinical Engineering Handbook; Dyro, J.F. Elsevier; 2004; pp. 353–355.
Associação Brasileira De Normas Técnicas. ABNT NBR 15943:2011: Diretrizes para um programa de gerenciamento de equipamentos de infraestrutura de serviços de saúde e de equipamentos para a saúde. Brasil, 2011.
Branaghan, R.J. Human factors in medical device design: Methods, Principles, and Guidelines. Crit Care Nurs Clin North Am Jun. 2018;30(2):225–236. http://doi.org/10.1016/j.cnc.2018.02.005.
Ritter, F., Baxter, G.D., Churchill, E.F. Foundations for Designing User-Centered Systems. Springer: London, UK; 2014.
Nielsen, J. Usability Engineering. Morgan Kaufmann:California, USA; 1994.
Rubin, J. and Chisnell, D. Handbook of Usability Testing: how to Plan, Design, and Conduct Effective Tests, 2nd ed. Wiley:Indianapolis, USA; 2008.
Noémie, C., Natacha, M., Emilie, L.E., et al. Impact of the format of user instructions on the handling of a wrist blood pressure monitor. Cog Process. 2021;1:29. http://doi.org/10.1007/s10339-020-01006-1.
Picard, R. and Noury, N. The development of the living lab approach in the health and autonomy sector. 2015. In Proceedings of 17th International Conference On E-Health Networking, Application & Services (Healthcom), Boston, USA, October 14–17, 2015:182–188. http://doi.org/10.1109/healthcom.2015.7454495.
Pelayo, S., Marcilly, R. Bellandi, T. Human factors engineering for medical devices: European regulation and current issues. Int J Qual Health Care. 2020;33(1):31–36. http://doi.org/10.1093/intqhc/mzaa103.
Almeida, A.P.S.S. de, Almeida, R.M.A., Mello, C.H.P. In Manual de Tecnovigilância: uma abordagem sob a ótica da Vigilância Sanitária; Agência Nacional de Vigilância Sanitária, Gerência-Geral de Monitoramento de Produtos Sujeitos à Vigilância Sanitária, Gerência de Tecnovigilância, Eds.; Brasília, DF, Brazil: Anvisa, 2021; pp. 800.
Landman, A.B., Redden, L., Neri, P., et al. Using a medical simulation center as an electronic health record usability laboratory. J Am Med Inform Assoc. 2014;21(3):558–563. http://doi.org/10.1136/amiajnl2013-002233.
Associação Brasileira De Normas Técnicas. ABNT ISO/TR 16982:2014: Ergonomia da interação humano-sistema—Métodos de usabilidade que apoiam o projeto centrado no usuário. Brasil, 2014.
Tricco, A.C., et al. A scoping review of rapid review methods. BMC Med. 16 Sept. 2015;13(1):224. http://doi.org/ 10.1186/s12916-015-0465-6.
MInistério Da Saúde. Diretrizes metodológicas: elaboração de revisão sistemática e metanálise de ensaios clínicos randomizados. Brasília: Editora do Ministério da Saúde, 2021.
Moher, D., Liberati, A., Tetzlaff, J., et al. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. PLos Med. 2009;6(7):1000097. http://doi.org/10.1371/journal.pmed.1000097.
Aldoihi, S. and Hammami, O. Evaluation of CT scan usability for Saudi Arabian users. In Proceedings of the 2018 International Conference On Computer, Information And Telecommunication Systems (CITS), Alsace, Colmar, France, July 11–13, 2018:1–5. http://doi.org/10.1109/cits.2018.8440165.
Chaniaud, N., Métayer, N., Megalakaki, O., et al. Effect of prior health knowledge on the usability of two home medical devices: usability study. JMIR Mhealth Uhealth. 2020;8(9):e17983. http://doi.org/10.2196/17983.
Smith, E.A. and Gray, G. Developing a smart infusion pump dedicated to infusion safety. Ergon in Design. 2020;30(2):4–12. http://doi.org/10.1177/1064804620944760.
Elias, B.L., Moss, J.A., Dillavou, M., et al. Evaluation of nursing student perspectives of a simulated smart pump. Clin Simul Nurs. 2013;9(12):599–606. http://doi.org/10.1016/j.ecns.2013.04.018.
Gao, X., Wen, Q., Duan, X.L., et al. A hazard analysis of class I recalls of infusion pumps. JMIR Hum Factors. 2019;6(2):10366. http://doi.org/10.2196/10366.
Schnittker, R. Schmettow, M., Verhoeven, F., et al. Combining situated cognitive engineering with a novel testing method in a case study comparing two infusion pump interfaces. App. Ergon. 2016;55:16–26. http://doi.org/10.1016/j.apergo.2016.01.004.
Waterson, J., AI-Jaber, R., Kassab, T., et al. Twelve-month review of infusion pump near-miss medication and dose selection errors and user-initiated “good save” corrections: retrospective study. JMIR Hum Factors. 2020;7(3):20364. http://doi.org/10.2196/20364.
Schraagen, J.M. and Verhoeven, F. Methods for studying medical device technology and practitioner cognition: the case of user-interface issues with infusion pumps. J Biomed Inform. 2013;46(1):181–195. http://doi.org/10.1016/j.jbi.2012.10.005.
Marjanovic, N. and L’Her. E. A comprehensive approach for the ergonomic evaluation of 13 emergency and transport ventilators. Resp Care. May;61(5):632-639.https://doi.org/10.4187/respcare.04292.
Jiang, M.Y., Liu, S.L., Gao, J.Q., et al. Comprehensive evaluation of user interface for ventilators based on respiratory therapists’ performance, workload, and user experience. Med Sci Monit. 2018;24:9090–9101. http://doi.org/10.12659/msm.911853.
Reeson, M., Kyeremanteng, K., D’Egidio, G. Defibrillator design and usability may be impeding timely defibrillation. Jt Comm J Qual Patient Saf. 2018;44(9):536–544. http://doi.org/10.1016/j.jcjq.2018.01.005.
Fidler, R., Johnson, M., et al. Human factors approach to comparative usability of hospital manual defibrillators. Resuscitation. 2016;101:71–76. http://doi.org/10.1016/j.resuscitation.2016.01.029.
Sowan, A.K., Vera A.G., Fonseca, E.I., et al. Nurse competence on physiologic monitors use: toward eliminating alarm fatigue in intensive care units. Open Med Inform J. 2017;11(1):1–11. http://doi.org/10.2174/1874431101711010001.
Andrade, E., Quinlan, L., Harte, R., et al. Novel interface designs for patient monitoring applications in critical care medicine: human factors review. JMIR Hum Factors. 2020;7(3):15052. http://doi.org/10.2196/15052.
Reyes, P., Larée, D., Weinstein, A., al. Towards a conceptual model for the use of home healthcare medical devices: the multi-parameter monitor case. PLos One. 2018;13(12):0208723. http://doi.org/10.1371/journal.pone.0208723.
Marcilly, R., Bras Da Costa, S., Boog, C., et al. Impact of the context of use analysis for the extension of an existing medical device: an analgesia monitor case study. Stud Health. Technol Inform. 2013; 194.
Furniss, D., Masci, P., Curzon, P., et al. 7 Themes for guiding situated ergonomic assessments of medical devices: a case study of an inpatient glucometer. Appl Ergon. 2014; 45(6):1668–1677. http://doi.org/10.1016/j.apergo.2014.05.012.
Macdonald, C., Lunt, H., Downie, M., et al. How satisfied are patients when their choice of funded glucose meter is restricted to a single brand? J Diabetes Sci Technol. 2017; 11(5):1001–1006. http://doi.org/10.1177/1932296817693016.
Mandl, K.D., McNabb, M., Marks, N., et al. Participatory surveillance of diabetes device safety: a social mediabased complement to traditional FDA reporting. J Am Med Inform Assoc. 2014;21(4):687–691. http://doi.org/10.1136/amiajnl-2013-002127.
Spaeth, J., Schweizer, T., Schmutz, A., et al. Comparative usability of modern anaesthesia ventilators: a human factors study. Br J Anaesth. 2017;119(5):1000–1008. http://doi.org/10.1093/bja/aex226.
Santos, A.L.R. Wauben, L.S.G.L., Guilavogui, S., et al. Human factors perspective on the safety environment of nurse anaesthetist training in Haiti. In Proceedings of the 8th International Conference Appropriate Healthcare Technologies for Low Resource Settings - AHT2014. London, UK, September 17–18, 2014:43–47. http://doi.org/10.1049/cp.2014.0771.
Estock, J.L., Li, A., Casey, M.C., et al. Assessing use errors related to the interface design of electrosurgical units. AORN J. 2018;107(1):72–82. http://doi.org/10.1002/aorn.12006.
Jolly, J.D., Hildebrand, E.A., Branaghan, R.J. Better instructions for use to improve reusable medical equipment (RME) sterility. Hum Factors. 2013;55(2):397–410. http://doi.org/10.1177/0018720812456393.
Schaeffer, N.E. The role of human factors in the design and development of an insulin pump. J Diabetes Sci Technol. 2012;6(2):260–264. http://doi.org/10.1177/193229681200600208.
Surma-Aho, A., Hölttä-Otto, K., Nelskylä K., et al. Usability issues in the operating room—towards contextual design guidelines for medical device design. Appl Ergon. 2021;90:103221. http://doi.org/10.1016/j.apergo.2020.103221.
Taggart, R., Langer, M.D., Lewis, G. Human factors engineering and testing for a wearable, long duration ultrasound system self-applied by an end user. In Proceedings of 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago,USA, August 26–30, 2014: 554-557. http://doi.org/10.1109/embc.2014.6943651.
Wegner, S., Lohmeyer, Q., Wahlen, D., et al. Value of eye-tracking data for classification of information processing–intensive handling tasks: quasi-experimental study on cognition and user interface design. JMIR Hum Factors. 2020; 7(2):15581. http://doi.org/10.2196/15581.
Grebin, S.Z., Echeveste, M.E.S., Magnago, P.F., et al. Estratégia de análise para avaliação da usabilidade de dispositivos médicos na percepção do usuário: um estudo com pacientes em tratamento de hemodiálise. Cad Saúde Pública. 2018;34(8):e00074417. http://doi.org/10.1590/0102-311X00074417.
Pickup, L., Lang, A., Shipley, L., et al. Development of a clinical interface for a novel newborn resuscitation device: human factors approach to understanding cognitive user requirements. JMIR Hum Factors. 2019;6(2):12055. http://doi.org/10.2196/12055.
Muthya, P., Raja, A., Meghana, A. Leveraging simulation for usability engineering of medical devices. In proceedings of 2018 10th International Conference On Communication Systems & Networks (Comsnets), Bengaluru, India, January 03-07, 2018:693–698. http://doi.org/10.1109/comsnets.2018.8328297.
Furniss, D., Masci, P., Curzon, P. et al. 7 Themes for guiding situated ergonomic assessments of medical devices: a case study of an inpatient glucometer. Appl Ergon. 2014;45(6):1668–1677. http://doi.org/10.1016/j.apergo.2014.05.012.
Vincent, C.J. and Blandford, A. How do health service professionals consider human factors when purchasing interactive medical devices? A qualitative interview study. Appl Ergon. 2017;59:114–122. http://doi.org/10.1016/j.apergo.2016.08.025.
Liu, K., Chan, F.Y., Or, C.K., et al. Heuristic evaluation and simulated use testing of infusion pumps to inform pump selection. Int J Med Inform. 2019;131:103932. http://doi.org/10.1016/j.ijmedinf.2019.07.011.
Chan, A.J., Islam, M.K., Rosewall, T., et al. Applying usability heuristics to radiotherapy systems. Radiother & Oncol. 2012;102(1):142–147. http://doi.org/10.1016/j.radonc.2011.05.077.
GIuliano, K.K. Intravenous smart Pumps: Usability Issues, Intravenous Medication Administration Error, and Patient Safety. Crit Care Nurs Clin North Am. 2018;30(2):215–224. http://doi.org/10.1016/j.cnc.2018.02.004.
Fung, C.H., Igodan, U., Alessi, C., et al. Human factors/usability barriers to home medical devices among individuals with disabling conditions: in-depth interviews with positive airway pressure device users. Disabil Health J. 2015;8(1):86–92. http://doi.org/10.1016/j.dhjo.2014.06.002.